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Introduction 
Genomics techniques provide opportunities to better understand the genetic background of 
important trait complexes in farm animals. The major approach towards this goal is the local-
isation of quantitative trait loci (QTL) via linkage or association mapping. Both approaches 
are based on linking the phenotypic variation to genomic patterns as reflected by marker 
genotypes. Despite the fact that massive funding has gone into QTL mapping projects in 
farm animals, the number of fully characterised functional mutations so far is disappointingly 
low (Ron and Weller 2007). 
With the availability of high throughput genotyping platforms for single nucleotide polymor-
phisms (SNPs) in farm animals novel approaches towards understanding genetic mechanisms 
in selected populations get within reach. A common feature of farm animal populations is 
that they are subject to a selection pressure which clearly exceeds the level of selective forces 
in natural selection. It is of interest to identify regions in the genome that show a measurable 
reaction to selection pressure. Interestingly, such regions can be detected by analysing pat-
terns in the genomic data alone and do not require phenotypic information. Once such signals 
are identified and mapped, it is possible to annotate the functional genomic background of 
those regions, leading to a better understanding of how selection works in different trait 
complexes. At the same time, understanding the actual genomic mechanisms of selection in 
the history of a population provides a basis for developing more efficient genomic selection 
strategies to be applied in the future. 
In this paper we will review some major concepts for detecting signatures of directional 
selection based on high throughput genotypes both within and between populations. We will 
illustrate these methods with examples from recent large scale studies in cattle populations. 
Finally we will discuss the strengths and weaknesses of the suggested approaches and will 
address the main methodological challenges. 

Methods 
Within breed analyses. For within breed analyses a number of single-locus based methods 
analysing the site frequency spectrum are well established, such as Tajima’s D (Tajima 
1989) or Fay and Wu’s H (Fay and Wu 2000). However, we will concentrate here on meth-
ods linking haplotype frequency and length. A novel mutation under positive selection pres-
sure will increase rapidly in frequency, so that the surrounding conserved haplotype is long, 
which is called a ‘selective sweep’ (Maynard Smith and Haigh 1974). As selection carries an 
allele on a specific haplotype to higher frequency faster than the rate at which it is broken 
down by recombination, high frequency haplotypes will be longer than expected under neu-
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trality. This is the basic concept of the Extended Haplotype Homozygosity (EHH) statistic as 
introduced by Sabeti et al. (2002). To evaluate the decay of haplotype homozygosity with 
increasing distance from a core haplotype of interest we performed the EHH test as imple-
mented in the software Sweep v.1.1 (Sabeti et al. 2002). The test is based on the contrast of a 
core haplotype with both high frequency and extended homozygosity with other core haplo-
types at the same locus. EHH is the probability that two randomly chosen haplotypes carry-
ing the candidate core haplotype are homozygous for the entire interval spanning the core 
region to a given adjacent locus. The EHH of a tested core haplotype t is  
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where t  is the number of samples of a particular core haplotype t, ti  is the number of 
samples of a particular extended haplotype i, and s is the number of unique extended haplo-
types. 
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Recombination rates vary along the genome, as was e.g. demonstrated by Simianer et al. 
(1997) for the bovine genome. This raises the possibility that a larger EHH statistic may 
rather be due to low recombination rates in a particular region and not necessarily to recent 
positive selection. To account for this, Sabeti et al. (2002) suggested the Relative Extended 
Haplotype Homozygosity (REHH) statistic which corrects the observed EHH value at one 
core haplotype for the average level of EHH values for all relevant core haplotypes in the 
same region. 
REHH statistics make only use of genomic patterns as displayed by marker configurations. 
Neither phenotypes nor external knowledge on e.g. novel mutations (relative to wild ances-
tors) are used. SNPs or core haplotypes under positive selection pressure are only indirectly 
identified by having a high frequency and a long surrounding haplotype stretch at the same 
time. As an alternative, Voight et al. (2006) developed the integrated Haplotype Score 
(|iHS|) based on the comparison of EHH between derived and ancestral alleles within a popu-
lation. Ancestral alleles are those variants which are present in the wild ancestor or an out-
group. Compared to REHH the |iHS| statistic uses additional external information and thus 
should be more robust and powerful. 
 
Between breed analyses. Rather different philosophies are used to identify regions under 
selection based on multi-population data. Here, the assumption is that selection causes an 
increased differentiation on the genomic level if breeds are selected divergently. A widely 
used single locus statistic for differentiation is ST  measuring relatedness between pairs of 
alleles within a sub-population relative to that in an entire population (Wright 1951; Cocker-
ham 1969; Weir and Hill 2002). Equivalently, ST can be interpreted as a measure of disper-
sion of gene frequencies among groups relative to the variation expected in the population 
from which such groups derived. Gianola et al. (2010) suggested a simple Bayesian model 
for drawing samples from posterior distributions of locus-specific ST  values. Following 
Jeffreys’ rule (Bernardo and Smith 1994) a Beta(0.5, 0.5) distribution is assigned as a refer-
ence prior to all loci in all populations. This leads to the joint posterior density of all allele 
frequencies 
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where  is the vector of allele frequencies,  is the number of observed alleles  at 
the biallelic locus  in group 

p ilkn 2,1=k
Ll ≤≤1 Ni ≤≤1  and Data  is the set of observed allele reali-

sations in the sample. Samples can be drawn from this posterior distribution from which 
Monte Carlo estimates of features of the posterior distribution, like posterior means, vari-
ances, or credibility intervals can be calculated.  
Based on this it is also possible to draw samples from the posterior distribution of STF  val-
ues. Let  be samples from the posterior distribution of allele 1 at locus  
in group . Then, a draw from the posterior distribution of  is given by 
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which is a random variable with support in (0,1). From this it is rather straightforward to 
assess features of the posterior distribution of  values. ST
Breed differentiation by reproductive separation and genetic drift is a process which is affect-
ing all loci in the genome in a similar fashion. Therefore one would expect, in the absence of 
directional selection, that all ST  values across the genome originate from the same stochas-
tic process and hence share a single distribution. If, however, breed differentiation is not 
based on drift alone, but directional selection is active and operates differently on different 
genomic regions, one would expect a larger degree of differentiation in some regions com-
pared to the average or background level of differentiation caused by drift. Hence, STF  val-
ues in different regions are expected to stem from different distributions, with higher ST  
values reflecting divergent selection and lower ST  values reflecting balancing selection, 
respectively. This can be assessed by clustering a set of  values (in this case, posterior 
means) from a multi locus analysis into data driven groups. 
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Applications to cattle data 
Within breed analyses. Qanbari et al. (2010a) performed a whole genome scan for selection 
signatures in the Holstein genome based on 810 individuals genotyped with the Illumina 
Bovine SNP50 BeadChip. After filtering, 40’854 autosomal SNPs covering 2544.1 Mbp of 
the genome could be used. A total of 3741 core regions spanning 472.1 Mbp (18.55%) of the 
genome were identified. A total of 28’323 EHH tests with an average of 7.57 tests per core 
region were calculated, reflecting multiple core haplotypes per region and tests in both (3’ 
and 5’) directions. Figure 1 displays box plots of the distribution of -log10 (p-values) within 
bins of core haplotype frequency. It is evident that the extreme outliers primarily appear with 
moderate haplotype frequencies. 
Extreme REHH values were found on all chromosomes with substantial clusters on chromo-
somes 2, 10, and 20. Analysis of a set of 10 candidate regions, which a priori were assumed 
to be under selection, revealed that 5 of them (DGAT1, Casein Cluster, Growth Hormone 
Receptor, Somatostatin and Leptin Receptor) showed extreme REHH values. Results are also 
in agreement with the findings of Hayes et al. (2009) who suggested signatures of selection 



in the vicinity of GHR and DGAT1 genes as revealed by allele frequency differences. The 
long range linkage disequilibrium (LD) consistency observed in this study is also in coinci-
dence with the reports of Grisart et al. (2001) and Marques et al. (2008) who used EHH plots 
to evaluate extended long range LD around DGAT1, especially the second most frequent 
core haplotype in the DGAT1 region which was shown to be in complete LD with the causa-
tive DGAT1 mutation (Qanbari, 2010a). The annotation of the most extreme selection sig-
nals revealed that the affected regions are mostly associated with physiological pathways 
related to growth and lactation, but also genes affecting female and male fertility were 
strongly represented. This comprised genes affecting spermatogenesis which were also found 
to be under positive selection in the human genome (Wyckoff et al. 2000). 
 

 
Figure 1: Box plot of the distribution of P-values in core haplotype frequency bins of 
5% (Qanbari et al., 2010a). 
 
In a follow-up study Qanbari et al. (2010b) applied the |iHS| test to a sample of 2091 German 
Holstein Friesian animals, again genotyped with the Illumina Bovine SNP50 BeadChip. 
Ancestral alleles were taken from Matukumalli et al. (2009). The 39’474 |iHS| values were 
combined into 5055 non-overlapping sliding windows of 500 kb length, results are depicted 
in Figure 2. The interval with an outlier value (Mb 57.25–57.75 on chromosome 18) contains 
the Sialic acid binding Ig-like lectin 5 gene and the Zinc finger protein 577 gene which re-
cently were reported as candidates to have large effects on calving ease, several conforma-
tion traits, longevity, and total merit in Holstein cattle (Cole et al. 2009). The overall list of 
candidate regions identified through the |iHS| test comprised genes involved in the biological 
processes such as anatomical structure development, muscle development, carbohydrate and 
lipid metabolism, spermatogenesis and fertilisation. These results generally are consistent 
with the observations of Flori et al. (2009). Evidence for positive selection in the genomic 



region surrounding muscle related genes has been also reported in racing horses (Gu et al., 
2009). 
 
 

 
 
Figure 2: Genome wide distribution of |iHS| values in the Holstein genome ordered by 
chromosome. Each dot represents the average |iHS| values for a 500 kb window (Qan-
bari et al., 2010b). 
 
Between breed analyses. In the same study, Qanbari et al. (2010b) also performed an ST -
based analysis following the Bayesian model as suggested by Gianola et al. (2010). The 
study was based on 2091 German Holstein Friesian, 277 German Brown Swiss, 102 Cana-
dian Angus and 43 Canadian Piedmontese animals. All animals were genotyped with the 
Illumina Bovine SNP50K BeadChip, and in this case all autosomal SNPs were used which 
had a MAF > 0.001% in at least one of the populations. In total, 2514 animals and 40’595 
SNPs were used. 2000 samples of the joint posterior density of allele frequencies were 
drawn, resulting in 2000 draws from the posterior distribution of ST  values per locus. The 
posterior mean ± standard errors of pairwise ST  values between breeds are given in Table 1. 
Clearly the amount of differentiation within dairy (Holstein, Brown Swiss) and within beef 
(Angus, Piedemontese) breeds, respectively, is substantially smaller and less variable than 
the differentiation between dairy and beef breeds, respectively. 
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Table 1: Posterior means ± standard errors of the pairwise   values between breeds 
(Qanbari et al., 2010b) 

STF

 
 Brown Swiss Angus Piedemontese 
Holstein 0.057 ± 0.076 0.274 ± 0.315 0.270 ± 0.313 
Brown Swiss  0.290 ± 0.334 0.281 ± 0.335 
Angus   0.022 ± 0.041 

 
 
Figure 3 shows the posterior density of the distribution of posterior means of  values over 
all loci between dairy and beef breeds. The histogram illustrates well that a majority of the 
density is centered around ~0.05, while a substantial proportion of the posterior density cov-
ers the entire parameter space. A mixture model of posterior means analysis (over loci) with 
the Flexmix routine in R (Leisch 2004) reveals a mixture of two normals. Strong evidence 
for selection in the region of the GHR gene on BTA20 is consistent with the findings of Flori 
et al. (2009) and Hayes et al. (2009), the latter reporting it for an Angus vs. Holstein breed 
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comparison. Two regions on BTA2 and BTA5 in the vicinity of ZRANB3, R3HDM1 and 
WIF1 genes known to affect feed efficiency and mammalian mesoderm segmentation, re-
spectively (The Bovine HapMap consortium 2009), also matched to the outlier FST windows 
in our study. Extreme peaks were frequent in presumed gene deserts, which may reflect se-
lection acting on uncharacterised regulatory regions or simply fixation of non-coding DNA 
by genetic drift. This observation is consistent with the reports of Flori et al. (2009) and Gu 
et al. (2009) which detected signals of divergent selection in genome regions with poor gene 
content in genome wide analyses of cattle and thoroughbred horse, respectively, using the 
FST statistic. Thus, these results in combination with the observations from Voight et al. 
(2006), Carlson et al. (2005) and Wang et al. (2006) on human population data suggest that 
non-coding regions may have been an important substrate for adaptive evolution. 
 

 
Figure 3: Histogram of the distribution of posterior mean over loci of  values be-
tween dairy and beef breeds and densities of the underlying mixture of two normals 
(green) and the respective components (red) 
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Discussion 
All methods considered use different indications of selection on the genomic level. There-
fore, a moderate inconsistency of results across different approaches is expected. Beyond this 
methodological reason, a lack of power due to limited sample size and marker density may 
also contribute to discordant results. If, say, power is only 50 per cent for finding a selection 
signature in one location with either method A or method B, the probability of finding the 
signature with both method A and B is only 25 per cent. In the comparison across breeds, 
selection for a certain trait may result in different genomic set-ups, again leading to inconsis-
tent results. If, say, selection acts on a phenotype which is a result of a complex pathway, the 
process may be optimised by modifications of different steps in the pathway in different 
selected populations. Again, discordant signals will be detected in such a case. While the 
reported studies in the cattle genome only analysed autosomal markers, X-linked genes were 
found to be overrepresented in studies of selection signatures in the genome of primates 
(Nielsen et al. 2005). This is attributed to the large number of sperm- and testis-associated 



genes on the chromosome, as well as to the hemizygosity of the non-pseudoautosomal part of 
the X-chromosome in males, exposing recessive alleles to an increased selective pressure 
(Schaffner 2004). 
A general drawback of the methods described is that no rigorous statistical testing procedure 
is available and implemented. The methods rather depend on outlier detection, assuming that 
the most extreme values of the statistic discovered in a genome-wide scan, relative to the 
average value of the test statistic over all locations, likely represent regions that were under 
highest selection pressure. In general, selection signature methods are mainly used either to 
identify candidate regions for further molecular-genetic characterisation (for a review in the 
human genetics context see Sabeti et al. 2006), or to assess putative selection effects in can-
didate genes derived from biological knowledge and/or from mapping studies in the same 
material (see e.g. Nilsen et al. 2009). For a rigorous statistical test of a selection signature at 
a specific locus, the distribution of the test statistic under the null hypothesis (no signature at 
this locus) is required. This distribution can either be derived theoretically or generated em-
pirically, e.g. by a permutation of the data (Churchill and Doerge 1994) or based on back-
ward simulation procedures like the coalescent (Schaffner et al. 2005). The suggested clus-
tering of STF -values (Gianola et al. 2010) in the genome-wide scan may be a step towards a 
detection of genomic regions with different characteristics caused by locus-specific forces, 
one of which may be an increased sensitivity towards selection. A proper testing strategy 
also should account for the multiple testing problem, which is notorious in the context of 
whole genome scans, and the problem of a potential ascertainment bias due to SNP selection.  
Other methodological issues which are of special concern in farm animals are (i) the small 
effective population size of farm animal populations compared to human populations, (ii) the 
possible admixture of populations and (iii) the available marker density, which is one or two 
orders of magnitudes away from what is available in human genetics.  

Conclusions 
Whole genome scans for selection signatures in farm animals are a novel approach which 
became feasible only recently with the availability of high throughput SNP genotyping. De-
spite a number of open methodological questions which are addressed in this contribution, 
the concept is promising and early results are highly encouraging. With larger data sets and 
higher marker densities becoming available in the near future, these approaches will provide 
a much better insight on the biological mechanisms underlying natural and artificial selection 
in farm animals. This will provide the basis for the design of more efficient selection strate-
gies, but also will help to understand biological limits and constraints. 
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