A 2.5-Year Eddy Covariance Study of Nitrous Oxide Fluxes in Winter Barley, Sugar Beet and Winter Wheat: **Responses to Environmental and Management Factors**

Paulina Englert^{1,2}, Christian Markwitz³, Mubaraq Olarewaju Abdulwahab⁴, Nicholas Cowan⁵, Nina Buchmann⁶, Alexander Knohl³, Stefan Siebert², Ana Meijide¹

IMPORTANCE

- **Nitrous Oxide** (N₂O) is one of the three most important greenhouse gases
- Largest source of stratospheric NOx \rightarrow ozone depletion
- 67% of anthropogenic emissions arise from agriculture (FAOSTAT)

CHALLENGES

- High spatial & temporal **variability** of N₂O fluxes
- Measurements difficult due to intensive management
- Chamber measurements have limitations in time & space

Site description

- EC flux tower on a 10 ha field at **Reinshof**, Germany (**DE-Rns**) managed with common agricultural practice
- 51.49 °N, 9.93 °E, 155 m a.s.l.
- MAP = 618 ± 114 mm , MAT = 9.5 ± 0.7 °C
- Fluvisol, loamy soil, pH = 7.0

Flux tower setup

- Closed-path N₂O analyzer (Los Gatos Research)
- Sensors for soil moisture & temperature, precipitation and air temperature
- Flux calculation with EddyPro[®] with fixed time lag
- Filtering for u* < 0.11, QC = 0 and footprint 70%
- Recording of management practices:

```
fertilization Solution tillage Solution
```

harvest

- High temporal variability of cropland N₂O fluxes due to **environmental** (soil moisture, soil temperature) and **management** factors (fertilization, tillage, crop growth)
- N₂O fluxes at half-hourly resolution from several years can help us to better estimate N₂O budgets of crop cultivation and to **develop mitigation strategies**
- **Outlook**: application of decision tree-based machine learning approaches for gap-filling and identification of the most important drivers
- ¹ Environment Modeling, Institute of Crop Science and Resource Conservation, University of Bonn, Germany ² Division of Agronomy, Department of Crop Sciences, University of Goettingen, Germany
- ³ Bioclimatology, University of Goettingen, Germany
- ⁴ French National Research Institute for Agriculture, Food, and Environment, Rennes, France
- ⁵ UK Centre for Ecology and Hydrology, Edinburgh, UK
- ⁶ Grassland Sciences, Department of Environmental System Science, ETH Zuerich, Switzerland

AIMS Improving the quantification of N₂O fluxes using nonintrusive & spatially integrated Eddy Covariance (EC) measurements • Understanding the **drivers** of N₂O fluxes from **croplands**

Footprint (acc. Kljun et al. 2015)

- lines from 10 to 90% in 10% steps
- field in the south same management

ACKNOWLEDGEMENTS

We thank Christiane Münter, Gabi Kolle, Edgar Tunsch & Mattia Bonazza for technical support! This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy -EXC 2070 – 390732324.

Abbreviations **u***: Friction velocity QC: Quality control **WFPS**: Water filled pore space

of (m

n total, cumulative N ₂ O emissions of 4.03 kg N ₂ O-N ha ⁻¹ \rightarrow emission		
2022 : 1.08 kg N ₂ O-N ha ⁻¹	(EF 0.62%)	Winter Barley:
2023 : 0.74 kg "	(EF 1.23%)	Sugar Beet:
2024: 2.22 kg "	(EF 1.12%)	Winter Wheat

29% occurred within three weeks after N fertilizations

www.inres.uni-bonn.de/envimod